Publications

How Can Abstract Objects of Mathematics Be Known? / Journal Article

Kvasz, L. Philosophia Mathematica, Volume 27, Issue 3, October 2019, Pages 316–334.

The aim of the paper is to answer some arguments raised against mathematical structuralism developed by Michael Resnik. These arguments stress the abstractness of mathematical objects, especially their causal inertness, and conclude that mathematical objects, the structures posited by Resnik included, are inaccessible to human cognition. In the paper I introduce a distinction between abstract and ideal objects and argue that mathematical objects are primarily ideal. I reconstruct some aspects of the instrumental practice of mathematics, such as symbolic manipulations or ruler-and-compass constructions, and argue that instrumental practice can secure epistemic access to ideal objects of mathematics.

About Project

The aim of the project is to develop a formalization of epistemology analogous to Frege’s formalization of logic. The core of the project centres upon five theses setting out the path to a truly formal epistemology. These theses are based on the deeply-held belief that the current trend in the formalization of epistemology is insufficiently radical.

Search